Bridging the mediational gap with dynamic geometry: dynamism, dependence and temporality
Main Article Content
The emergence of Dynamic Geometry Environments -such as GeoGebra- has brought about changes in both the teaching and learning of geometry, as well as in Geometry Education research. The aim of this article is to interpret such changes as a reduction of the mediational gap.To develop this objective, two important aspects are presented. On the one hand, the historical evolution of geometric representations -from static to dynamic representations-, the technologies that generate them and the level of interaction they allow. And on the other hand, the characterization of the mediational role of Dynamic Geometry Environments, through the description of their dimensions, namely, dynamism, dependence and temporality. Together, both aspects allow us to recognize that the reduction of the mediational gap produced by Dynamic Geometry Environments refers to the possibility of accessing and interacting with the structure of geometric objects. This thanks to the geometric properties added to the dynamic representations, the possibility of unveiling the hierarchical relationship between the constituent objects of a dynamic representation, and conjecturing or making visible the sequence of construction of a dynamic representation.
To develop this objective, two important aspects are presented. On the one hand, the historical evolution of geometric representations -from static to dynamic representations-, the technologies that generate them and the level of interaction they allow. And on the other hand, the characterization of the mediational role of Dynamic Geometry Environments, through the description of their dimensions, namely, dynamism, dependence and temporality.
Together, both aspects allow us to recognize that the reduction of the mediational gap produced by Dynamic Geometry Environments refers to the possibility of accessing and interacting with the structure of geometric objects. This thanks to the geometric properties added to the dynamic representations, the possibility of unveiling the hierarchical relationship between the constituent objects of a dynamic representation, and conjecturing or making visible the sequence of construction of a dynamic representation.
- Mediation
- Dynamic Geometry Environments (DGE)
- Representation
- Dragging
- GeoGebra
Arzarello, F., Olivero, F., Paola, D., y Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. Zentralblatt Für Didaktik Der Mathematik, 34, 66–72. https://doi.org/10.1007/BF02655708 DOI: https://doi.org/10.1007/BF02655708
Baccaglini-Frank, A. E. y Mariotti, M. A. (2010). Generating Conjectures in Dynamic Geometry: The Maintaining Dragging Model. International Journal of Computers for Mathematical Learning, 15, 225–253. https://doi.org/10.1007/s10758-010-9169-3 DOI: https://doi.org/10.1007/s10758-010-9169-3
Drijvers, P., Kieran, C., Mariotti, M. A., Ainley, J., Andresen, M., Chan, Y. C., Dana-Picard, T., Gueudet, G., Kidron, I., Leung, A., y Meagher, M. (2009). Integrating Technology into Mathematics Education: Theoretical Perspectives. En C. Hoyles y J. B. Lagrange. (Eds.), Mathematics Education and Technology-Rethinking the Terrain (pp. 89–132). Springer. https://doi.org/10.1007/978-1-4419-0146-0_7 DOI: https://doi.org/10.1007/978-1-4419-0146-0_7
Erez, M. M., y Yerushalmy, M. (2006). “If You Can Turn a Rectangle into a Square, You Can Turn a Square into a Rectangle ...” Young Students Experience the Dragging Tool. International Journal of Computers for Mathematical Learning, 11, 271–299. https://doi.org/10.1007/s10758-006-9106-7 DOI: https://doi.org/10.1007/s10758-006-9106-7
Fahlgren, M., y Brunström, M. (2014). A Model for Task Design with Focus on Exploration, Explanation, and Generalization in a Dynamic Geometry Environment. Technology, Knowledge and Learning, 19, 287–315. https://doi.org/10.1007/s10758-014-9213-9 DOI: https://doi.org/10.1007/s10758-014-9213-9
Freiman, V. (2020). Types of Technology in Mathematics Education. In: S. Lerman, (Ed.) Encyclopedia of Mathematics Education (pp. 869-879). Springer. https://doi.org/10.1007/978-3-030-15789-0_158 DOI: https://doi.org/10.1007/978-3-030-15789-0_158
Goldenberg, E. P,. y Cuoco, A. A. (1998). What is Dynamic Geometry? En R. Lehrer y D. Chazan (Eds.), Designing Learning Environments for Developing Understanding of Geometry and Space (pp. 351–367). https://doi.org/10.4324/9780203053461 DOI: https://doi.org/10.4324/9780203053461
Healy, L. (2000). Identifying and explaining geometrical relationship: Interactions with robust and soft Cabri constructions. En T. Nakahara y M. Koyama (Eds.), Proceedings of the 24th Conference of the International Group for the Psychology of Mathematics Education. Vol. 1 (pp. 138–152). Hiroshima University.
Healy, L. (2003). Using the transformation tools of Cabri- Géomètre as a resource in the proving process. En J. B. Lagrange, M. Artigue, D. Guin, C. Laborde, D. Lenne, y L. Trouche (Eds.), Actes du Colloque européen: Intégration des Technologies dans l’Enseignement des Mathématiques. IUFM Champagne Ardenne.
Hilbert, D. (1950). The Foundations of Geometry. The open court publishing company.
Hölzl, R. (2021). Using Dynamic Geometry Software to Add Contrast to Geometric Situations – A Case Study. International Journal of Computers for Mathematical Learning 6, 63–86. https://doi.org/10.1023/A:1011464425023 DOI: https://doi.org/10.1023/A:1011464425023
Kaur, H. (2015). Two aspects of young children’s thinking about different types of dynamic triangles: prototypicality and inclusion. ZDM, 47(3), 407–420. https://doi.org/10.1007/s11858-014-0658-z DOI: https://doi.org/10.1007/s11858-014-0658-z
Komatsu, K. y Jones, K. (2020). Interplay between Paper-and-Pencil Activity and Dynamic-Geometry-Environment Use during Generalisation and Proving. Digital Experiences in Mathematics Education, 6(2), 123–143. https://doi.org/10.1007/s40751-020-00067-3 DOI: https://doi.org/10.1007/s40751-020-00067-3
Laborde, C. (2005). Robust and soft constructions: Two sides of the use of dynamic geometry environments. En S.-C. Chu, H.-C. Lew, W.-C. Yang y H.-K. Taehakkyo (Eds), Proceedings of the 10th Asian Technology Conference in Mathematics (pp. 22–35). Korean National University of Education. https://atcm.mathandtech.org/EP/2005/2005P279/fullpaper.pdf
Leung, A. (2008). Dragging in a dynamic geometry environment through the lens of variation. International Journal of Computers for Mathematical Learning, 13(2), 135–157. https://doi.org/10.1007/s10758-008-9130-x DOI: https://doi.org/10.1007/s10758-008-9130-x
Leung, A. (2015). Discernment and Reasoning in Dynamic Geometry Environments. En S. J. Cho (Ed.), Selected Regular Lectures from the 12th International Congress on Mathematical Education (pp. 451–469). https://doi.org/10.1007/978-3-319-17187-6_26 DOI: https://doi.org/10.1007/978-3-319-17187-6_26
Leung, A., Baccaglini-Frank, A., Mariotti, M.A. & Miragliotta, E. (2023). Enhancing Geometric Skills with Digital Technology: The Case of Dynamic Geometry. En B. Pepin, G. Gueudet y J. Choppin (Eds.), Handbook of Digital Resources in Mathematics Education (pp. 1-30). Springer. https://doi.org/10.1007/978-3-030-95060-6_15-1 DOI: https://doi.org/10.1007/978-3-030-95060-6_15-1
Miragliotta, E. y Baccaglini-Frank, A. (2021) Enhancing the skill of geometric prediction using dynamic geometry. Mathematics 9(8), 821. https://doi.org/10.3390/math9080821 DOI: https://doi.org/10.3390/math9080821
Moreno-Armella, L. y Sriraman, B. (2005). The articulation of symbol and mediation in mathematics education. Zentralblatt für Didaktik der Mathematik 37(6), 476–486. https://doi.org/10.1007/BF02655856 DOI: https://doi.org/10.1007/BF02655856
Moreno-Armella, L. (2018). La geometría en el mundo moderno. Praxis, Educación y Pedagogía, (2), 8-35. https://doi.org/10.25100/praxis_educacion.v0i2.7800 DOI: https://doi.org/10.25100/praxis_educacion.v0i2.7800
Moreno-Armella, L., Hegedus, S. y Kaput, J. (2008). From static to dynamic mathematics: Historical and representational perspectives. Educational Studies in Mathematics, 68(2), 99–111. https://doi.org/10.1007/s10649-008-9116-6 DOI: https://doi.org/10.1007/s10649-008-9116-6
Pletser, V. y Huylebrouck, D. (1999). The Ishango artefact: the missing base 12 link. Forma, 14(4), 339-346. https://forma.katachi-jp.com/pdf/1404/14040339.pdf
Real Academia de Española (2022). Brecha. Diccionario de la lengua española. https://dle.rae.es/brecha
Rubio-Pizzorno, S. (2020). Impulsando la Educación Abierta en Latinoamérica desde la Comunidad GeoGebra Latinoamericana. Revista Do Instituto GeoGebra Internacional de São Paulo, 9(1), 10–25. https://doi.org/10.23925/2237-9657.2020.v9i1p10-25 DOI: https://doi.org/10.23925/2237-9657.2020.v9i1p10-25
Sinclair, N., y Bruce, C. D. (2015). New opportunities in geometry education at the primary school. ZDM, 47(3), 319–329. https://doi.org/10.1007/s11858-015-0693-4 DOI: https://doi.org/10.1007/s11858-015-0693-4
Sinclair, N., Cirillo, M., & de Villiers, M. (2017). The Learning and Teaching of Geometry. En J. Cai (Ed.), Compendium for Research in Mathematics Education (pp. 457–489). National Council of Teachers of Mathematics Education. https://www.nctm.org/Store/Products/Compendium-for-Research-in-Mathematics-Education-(Download)/
Sinclair, N., y Yurita, V. (2008). To be or to become: how dynamic geometry changes discourse. Research in Mathematics Education, 10(2), 135–150. http://doi.org/10.1080/14794800802233670 DOI: https://doi.org/10.1080/14794800802233670
Talmon, V., & Yerushalmy, M. (2004). Understanding dynamic behavior: Parent–Child relations in dynamic geometry environments. Educational Studies in Mathematics, 57(1), 91–119. https://doi.org/10.1023/B:EDUC.0000047052.57084.d8 DOI: https://doi.org/10.1023/B:EDUC.0000047052.57084.d8
Yanik, H. B. (2013). Learning geometric translations in a dynamic geometry environment. Education and Science, 38(168), 272–287. http://egitimvebilim.ted.org.tr/index.php/EB/article/view/1585/595
Downloads

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.