Análisis sistemático de desgaste físico en fútbol con tecnología inercial: revisión e integración pedagógica, resaltando variables clave para planificación del entrenamiento
Palabras clave:
Fútbol, Sensores de desgaste físico, Entrenamiento físico, Pedagogía, Modelos de enseñanza, Monitoreo fisiológico, Educación física, Didáctica, EnseñanzaContenido principal del artículo
El objetivo de la investigación fue analizar los sensores de desgaste físico en el fútbol y las tecnologías recientes para medir variables físicas en los últimos cinco años. Asimismo, se planteó evaluar la contribución de estas innovaciones a profesionales de la salud, actividad física y entrenamiento, y su relevancia en la planificación y pedagogía del entrenamiento.
Akyildiz, Z., Clemente, F. M., Şentürk, D., Gürol, B., Yildiz, M., Ocak, Y., y Günay, M. (2022). Investigation of the convergent validity and reliability of unit position differences of Catapult S5 GPS units in field conditions. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology. https://doi.org/10.1177/17543371221100592 DOI: https://doi.org/10.1177/17543371221100592
Bastiaansen, B. J. C., Vegter, R. J. K., Wilmes, E., de Ruiter, C. J., Lemmink, K. A. P. M., y Brink, M. S. (2022). Biomechanical load quantification using a lower extremity inertial sensor setup during football specific activities. Sports Biomechanics, 1–16. https://doi.org/10.1080/14763141.2022.2051596 DOI: https://doi.org/10.1080/14763141.2022.2051596
Burland, J. P., Outerleys, J. B., Lattermann, C., y Davis, I. S. (2020). Reliability of wearable sensors to assess impact metrics during sport-specific tasks. Journal of Sports Sciences, 39(4), 406–411. https://doi.org/10.1080/02640414.2020.1823131 DOI: https://doi.org/10.1080/02640414.2020.1823131
Chiang, Y.-Y., Shih, W.-Y., Chen, W.-H., Huang, J.-L., y Shiang, T.-Y. (2020). A machine learning-based countermovement performance measurement method using a wearable IMU. Proceedings of the 2020 International Conference on Pervasive Artificial Intelligence (ICPAI), 79–85. IEEE. https://doi.org/10.1109/ICPAI51961.2020.00022 DOI: https://doi.org/10.1109/ICPAI51961.2020.00022
de-Oliveira, L. A., Aragao-Santos, J. C., Heredia-Elvar, J. R., y Da Silva-Grigoletto, M. E. (2022). Movement velocity as an indicator of mechanical fatigue and resistance exercise intensity in cross modalities. Research Quarterly for Exercise and Sport, 94(4), 1028–1034.https://doi.org/10.1080/02701367.2022.2101603 DOI: https://doi.org/10.1080/02701367.2022.2101603
de Ruiter, C. J., Wilmes, E., Brouwers, S. A. J., Jagers, E. C., y van Dieen, J. H. (2022). Concurrent validity of an easy-to-use inertial measurement unit-system to evaluate sagittal plane segment kinematics during overground sprinting at different speeds. Sports Biomechanics, 1–14. https://doi.org/10.1080/14763141.2022.2056076 DOI: https://doi.org/10.1080/14763141.2022.2056076
Dobbin, N., Thorpe, C., Highton, J., y Twist, C. (2022). Individual and situational factors affecting the movement characteristics and internal responses to Touch match-play during an international tournament. Science and Medicine in Football, 7(4), 347–357. https://doi.org/10.1080/24733938.2022.2107232 DOI: https://doi.org/10.1080/24733938.2022.2107232
Grazioli, R., Loturco, I., Veeck, F., Setuain, I., Zandavalli, L. A., Inacio, M., Pinto, R. S., y Cadore, E. L. (2023). Speed-related abilities are similarly improved after sled training under different magnitudes of velocity loss in highly trained soccer players. International Journal of Sports Physiology and Performance, 18(4), 420-427. https://doi.org/10.1123/ijspp.2022-0354 DOI: https://doi.org/10.1123/ijspp.2022-0354
Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., y Welch, V. A. (Eds.) (2019). Cochrane handbook for systematic reviews of interventions (2a ed.). Wiley. https://doi.org/10.1002/9781119536604 DOI: https://doi.org/10.1002/9781119536604
Li, X., Li, C., Cui, Y., y Wong, D. P. (2020). Acute kinematics and kinetics changes to wearable resistance during change of direction among soccer players. Research in Sports Medicine, 29(2), 155–169. https://doi.org/10.1080/15438627.2020.1770761 DOI: https://doi.org/10.1080/15438627.2020.1770761
Marume, K., Mugele, H., Ueno, R., Amin, S. B., Lesmana, H. S., Possnig, C., Hansen, A. B., Simpson, L. L., y Lawley, J. S. (2023). The impact of leg position on muscle blood flow and oxygenation during low-intensity rhythmic plantarflexion exercise. European Journal of Applied Physiology, 123, 1091–1099. https://doi.org/10.1007/s00421-022-05117-9 DOI: https://doi.org/10.1007/s00421-022-05117-9
McDevitt, S., Hernandez, H., Hicks, J., Lowell, R., Bentahaikt, H., Burch, R., Ball, J., Chander, H., Freeman, C., Taylor, C., y Anderson, B. (2022). Wearables for biomechanical performance optimization and risk assessment in industrial and sports applications. Bioengineering, 9(1). https://doi.org/10.3390/bioengineering9010033 DOI: https://doi.org/10.3390/bioengineering9010033
McHugh, M. P., Clifford, T., Abbott, W., Kwiecien, S. Y., Kremenic, I. J., DeVita, J. J., y Howatson, G. (2019). Countermovement jump recovery in professional soccer players using an inertial sensor. International Journal of Sports Physiology and Performance, 14(1), 9–15. https://doi.org/10.1123/ijspp.2018-0131 DOI: https://doi.org/10.1123/ijspp.2018-0131
Nobari, H., Silva, R., Clemente, F. M., Oliveira, R., Carlos-Vivas, J., y Pérez-Gómez, J. (2021). Variations of external workload across a soccer season for starters and non-starters. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 237(3), 150-159. https://doi.org/10.1177/17543371211039297 DOI: https://doi.org/10.1177/17543371211039297
Oliva-Lozano, J. M., Gómez-Carmona, C. D., Fortes, V., y Pino-Ortega, J. (2022). Effect of training day, match, and length of the microcycle on workload periodization in professional soccer players: A full-season study. Biology of Sport, 39(2), 397–406. https://doi.org/10.5114/biolsport.2022.106148 DOI: https://doi.org/10.5114/biolsport.2022.106148
Pillitteri, G., Giustino, V., Petrucci, M., Rossi, A., Leale, I., Bellafiore, M., Thomas, E., Iovane, A., Palma, A., y Battaglia, G. (2023). Match load physical demands in U-19 professional soccer players assessed by a wearable inertial sensor. Journal of Functional Morphology and Kinesiology, 8(1). https://doi.org/10.3390/jfmk8010022 DOI: https://doi.org/10.3390/jfmk8010022
Praca, G. M., Abreu, C. D., Rochael, M., y Moreira, P. D. (2022). How reliable are the tactical measures obtained in soccer small-sided games? A test-retest analysis of observational instruments and GPS-based variables. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology. https://doi.org/10.1177/17543371221113925 DOI: https://doi.org/10.1177/17543371221113925
Russell, M., Sparkes, W., Northeast, J., Cook, C. J., Love, T. D., Bracken, R. M., y Kilduff, L. P. (2016). Changes in acceleration and deceleration capacity throughout professional soccer match-play. Journal of Strength and Conditioning Research, 30(10), 2839–2844. https://doi.org/10.1519/JSC.0000000000000805 DOI: https://doi.org/10.1519/JSC.0000000000000805
Schelling, X., y Robertson, S. (2020). A development framework for decision support systems in high-performance sport. International Journal of Computer Science in Sport, 19(1), 1–23. https://doi.org/10.2478/ijcss-2020-0001 DOI: https://doi.org/10.2478/ijcss-2020-0001
Spineti, J., Figueiredo, T., Willardson, J., de Oliveira, V., Assis, M., de Oliveira, L., Miranda, H., de Ribeiro Reis, V. M., y Simão, R. (2019). Comparison between traditional strength training and complex contrast training on soccer players. Journal of Sports Medicine and Physical Fitness, 59(1), 42–49. https://doi.org/10.23736/S0022-4707.18.07934-3 DOI: https://doi.org/10.23736/S0022-4707.18.07934-3
Taberner, M., O’Keefe, J., Flower, D., Phillips, J., Close, G., Cohen, D. D., Richter, C., y Carling, C. (2019). Interchangeability of position tracking technologies: Can we merge the data? Science and Medicine in Football, 4(1), 76–81. https://doi.org/10.1080/24733938.2019.1634279 DOI: https://doi.org/10.1080/24733938.2019.1634279
Zadeh, A., Taylor, D., Bertsos, M., Tillman, T., Nosoudi, N., y Bruce, S. (2021). Predicting sports injuries with wearable technology and data analysis. Information Systems Frontiers, 23(4), 1023–1037. https://doi.org/10.1007/s10796-020-10018-3 DOI: https://doi.org/10.1007/s10796-020-10018-3
Zagatto, A. M., Beck, W. R., y Gobatto, C. A. (2009). Validity of the running anaerobic sprint test for assessing anaerobic power and predicting short-distance performances. Journal of Strength and Conditioning Research, 23(6), 1820–1827. https://doi.org/10.1519/JSC.0b013e3181b3df32 DOI: https://doi.org/10.1519/JSC.0b013e3181b3df32
Downloads

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.